What Is Dyslexia Really?

The term dyslexia was coined from the Greek words dys, meaning ill or difficult, and lexis, meaning word. It is used to refer to persons for whom reading is simply beyond their reach. Spelling and writing, due to their close relationship with reading, are usually included.

According to popular belief dyslexia is a neurological disorder in the brain that causes information to be processed and interpreted differently, resulting in reading difficulties. Historically, the dyslexia label has been assigned to learners who are bright, even verbally articulate, but who struggle with reading; in short, whose high IQs mismatch their low reading scores. When children are not as bright, their reading troubles have been chalked up to their general intellectual limitations.

What does it look and sound like?

  • One of the most obvious tell-tale signs is reversals. People with this kind of problem often confuse letters like b and d, either when reading or when writing, or they sometimes read (or write) words like “rat” for “tar,” or “won” for “now.”
  • Another sure sign is elisions — that is when a person sometimes reads or writes “cat” when the word is actually “cart.”
  • The person may read very slowly and hesitantly, read without fluency, word by word, or may constantly lose his place, thereby leaving out whole chunks or reading the same passage twice.
  • The person may try to sound out the letters of the word, but then be unable to say the correct word. For example, he may sound the letters “c-a-t” but then say “cold.”
  • He may read or write the letters of a word in the wrong order, like “left” for “felt,” or the syllables in the wrong order, like “emeny” for “enemy,” or words in the wrong order, like “are there” for “there are.”
  • He may spell words as they sound, for example “rite” for “right.”
  • He may read with poor comprehension, or it may be that he remembers little of what he reads.
  • The person may have a poor and/or slow handwriting.
    .

Some misconceptions

Because of the erroneous belief that the brain cannot change, it was historically believed that dyslexia is “incurable”: “Dyslexia is like alcoholism … it can never be cured” (Clark, M., & Gosnell, M., “Dealing with dyslexia,” Newsweek, 22 March 1982, 55-56.)

Advocacy groups, in the rush to generate public awareness for the condition of dyslexia, with the cooperation of a compliant media, have perpetuated the belief that a host of famous individuals such as Albert Einstein, Leonardo da Vinci, Thomas Edison, Walt Disney, Winston Churchill and Hans Christian Andersen were dyslexic. The folk myth — the “affliction of the geniuses” — continues to be spread despite the fact that knowledge of the definition of dyslexia and the reading of any standard biographies would immediately reveal the inaccuracy of many such claims. For example, as educational psychologist Dr. Coles points out, Einstein’s reading of Kant and Darwin at age thirteen is hardly representative of individuals who are currently labeled dyslexic.

New technology sheds new light

By the turn of this century, the advancement in technology has made it possible for scientists to see inside the brain, resulting in the knowledge that the brain is plastic. New connections can form and the internal structure of the existing synapses can change. New neurons, also called nerve cells, are constantly being born, particularly in the learning and memory centers. A person who becomes an expert in a specific domain, will have growth in the areas of the brain that are involved with their particular skill. Even if the left hemisphere of a person’s brain is severely injured (in 95% of people the left hemisphere controls the capacity to understand and generate language), the right side of the brain can take over some language functions.

With fMRI-scans et cetera it has now been confirmed that — as was always suspected — there are indeed differences between the brains of dyslexic persons and good readers. More and more research studies, however, suggest that the cause-effect relationship should be reversed, i.e. that these differences might not be the cause, but the effect of the reading difficulty.

Using brain imaging scans, neuroscientist John D. E. Gabrieli at the Massachusetts Institute of Technology have found that there was no difference between the way poor readers with or without dyslexia think while reading.

The study conducted by Dr. Gabrieli involved 131 children, aged 7 to 16. Following a simple reading test and an IQ measure, each child was assigned to one of three groups: typical readers with typical IQs, poor readers with typical IQs, and poor readers with low IQs. During the test, researchers used functional magnetic resonance imaging (fMRI) to observe the activity in six brain regions identified as being important in connecting print and sound.

The results indicated that poor readers of all IQ levels showed significantly less brain activity in the six observed areas than typical readers. But there was no difference in the brains of the poor readers, regardless of their IQs.

In another study, published online in the Journal of Neuroscience, researchers analyzed the brains of children with dyslexia and compared them with two other groups of children: an age-matched group without dyslexia and a group of younger children who had the same reading level as the children with dyslexia. Although the children with dyslexia had less gray matter than age-matched children without dyslexia, they had the same amount of gray matter as the younger children at the same reading level.

Lead author Anthony Krafnick said this suggests that the anatomical differences reported in left-hemisphere language-processing regions of the brain appear to be a consequence of reading experience as opposed to a cause of dyslexia.

One must also consider that neurological differences do not equal neurological disorders and disabilities. We now also know that there are differences between the brains of people who can juggle and people who cannot juggle, between the brains of people who can play a musical instrument and people who cannot play a musical instrument. Then logically there will be differences between the brains of people who read well and people who struggle with reading!

New light brings new hope

The Edublox point of view, based on the latest research, is that dyslexia is not a DISability but simply an INability. While there are other causes, the most common cause of dyslexia is that the foundational skills of reading and spelling have not been mastered properly.

Learning is a stratified process. One step needs to be mastered well enough before subsequent steps can be learned. This means that there is a sequence involved in learning. It is like climbing a ladder; if you miss one of the rungs of the ladder, you will fall. If you miss out on one of the important steps in the learning process, you will not be able to master subsequent steps.

A simple and practical example of this is the fact that one has to learn to count before it becomes possible to learn to add and subtract. If one tries to teach a child to add and subtract before he has been taught to count, one will quickly discover that no amount of effort will ever succeed in teaching the child these skills.

This principle is also of great importance on the sports field. If we go to a soccer field to watch the coach at work, we shall soon find that he spends a lot of time drilling his players in basic skills, like heading, passing, dribbling, kicking, etc. The players who are most proficient at these basic skills usually turn out to be the best players in the actual game situation.

In the same way, there are also certain skills and knowledge that a child must acquire first, before it becomes possible for him to become a good reader.

Article continues below...  


Edublox Multisensory Brain-Training Programs
F
undamental solutions for dyslexia & learning difficulties

Overcoming Severe Dyslexia, Dyscalculia, Low IQ: A Case Study

Meet Maddie, a 10-year-old who had been diagnosed with severe dyslexia, moderate dyscalculia, ADHD and low IQ (low 80s). People who had evaluated her said that they had never seen dyslexia as severe as this before. Her parents had been told by more than one professional that Maddie would probably never read…
Read More

Kimberly, United States


The first rung of the reading ladder

Di dunia kini kita, tiap orang harus dapat membaca….

Unless one has FIRST learned to speak Bahasa Indonesia, there is no way that one would be able to read the above Indonesian sentence.

This shows that language is at the very bottom of the reading ladder. Its role in reading can be compared to the role of running in the game of soccer, or ice-skating in the game of ice hockey. One cannot play soccer if one cannot run, and one cannot play ice hockey if one cannot skate. One cannot read a book in a language — and least of all write — unless one knows the particular language.

If a child’s knowledge of English is poor, then his reading will also be poor. Evidence that links reading problems and language problems has been extensively presented in the literature. Research has, for example, shown that about 60 percent of dyslexics were late talkers. In order to prevent later reading problems, parents must therefore ensure that a child is exposed to sufficient opportunities to learn language.

The second rung consists of cognitive skills

While language skills comprise the first rung of the reading ladder, cognitive skills comprise the second. There is a whole conglomeration of cognitive skills that are foundational to reading and spelling.

Attention

“Everyone knows what attention is,” wrote William James in his Principles of Psychology (1890). “It is the taking of possession by the mind in clear and vivid form, of one out of what seem several simultaneously possible objects or trains of thought… It implies withdrawal from some things in order to deal effectively with others, and is a condition which has a real opposite in the confused, dazed, scatterbrained state.”

Needless to say, attention or concentration (the words attention and concentration are used synonymously) plays a critical role in learning. Focused attention is the behavioral and cognitive process of selectively concentrating on one aspect of the environment while ignoring other things, while sustained attention refers to the state in which attention must be maintained over time. Both are important foundational skills of reading.

Because attention is so important for reading, ADHD and dyslexia commonly co-occur. Approximately 25 percent of children who are diagnosed with ADHD, a learning difficulty known to affect concentration, are also dyslexic.

Visual perception

Visual perception plays a significant role in school learning, particularly in reading.

Visual perceptual deficit refers to a reduced ability to make sense of information taken in through the eyes. This is different from problems involving sight or sharpness of vision. Difficulties with visual perception affect how visual information is interpreted or processed. The person may have a difficulty to discriminate in terms of foreground-background, forms, size, and position in space. He may also be unable to synthesize and analyze.

  • Foreground-background differentiation involves the ability to focus on selected objects and screen out or ignore the irrelevant ones. The child experiencing a difficulty in this area is unable to recognise an object which is surrounded by others. For example, the child cannot locate a ball in a picture of several toys, or a word in a word-find puzzle.
    .
  • Form discrimination: Whether it is to differentiate a circle from a square, or the letter B from P, the ability to perceive the shapes of objects and pictures is an important skill for the developing child to acquire. There is hardly an academic activity that does not require the child to engage in form discrimination.
    .
    The most obvious classroom activity requiring the child to discriminate forms is that of reading. The learning of the letters of the alphabet, syllables, and words will undoubtedly be impeded if there is difficulty in perceiving the form of the letters, syllables, and words. That the discrimination of letters is a crucial skill in the early stages of reading is evidenced by an extensive literature review conducted by Chall (1967). She concluded that the letter knowledge of young children is a better predictor of early reading ability than the various tests of intelligence and language ability.
    .
  • Size discrimination: Capital letters, being used at the start of a sentence, sometimes look exactly the same as their lowercase counterparts, and must therefore be discriminated mainly with regard to size. A person who is unable to interpret size may, for example, find it difficult to distinguish between a capital letter C and a lowercase c.
    .
  • Spatial relations refer to the position of objects in space. It also refers to the ability to accurately perceive objects in space with reference to other objects. A person with a spatial problem may find it difficult to distinguish letters like b, d, p, and q.
    .
  • Synthesis and analysis: Synthesis refers to the ability to perceive individual parts as a whole, while analysis refers to perceiving the whole in its individual parts. Synthesis plays an important role in reading, whereas analysis is of special importance in spelling.
    .

Auditory perception

Myklebust defines auditory perception as the ability to “structure the auditory world and select those sounds which are immediately pertinent to adjustment.” Berry and Eisenson state that children with auditory perceptual deficits can hear sounds but are unable to recognize them for meaning. Defined as the ability to recognize or interpret what is heard, auditory perception plays as important a role as visual perception in reading.

Problems with auditory perception generally correspond to those in the visual area and are presented under the following components:

  • Auditory foreground-background differentiation refers to the ability to select and attend to relevant auditory stimuli and ignore the irrelevant. The child who has a difficulty in this area is unable to make such differentiation. As a consequence, everything heard is attended to equally. Thus, the teacher’s voice is lost in the background noises of other children’s whispers, or the voices in the corridor, or the traffic sounds coming from the street.
    .
  • Auditory discrimination refers to the ability to hear similarities and differences between sounds. The child who has a problem in this area is unable to identify gross differences, for example between a siren and a school bell, or phonemic difference as between the words /pen/ and /pin/ or /big/ and /pig/.
    .
  • Auditory blending. Also referred to as auditory analysis and synthesis, this is the ability to synthesize individual sounds which form a word. The child who manifests a difficulty in this area is unable to blend the individual sounds in a word, such as /c-a-t/. The child may know the individual phonemes but simply cannot put them together. Similarly, the child may have problems breaking apart an unknown word by syllables and blending it, such as /te-le-phone/.
    .

Memory

Memory is the retention of information over time. Although the word memory may conjure up an image of a singular, “all-or-none” process, it is clear that there are actually many kinds of memory, each of which may, to some extent, be independent of the other.

  • Visual memory involves the ability to store and retrieve previously experienced visual sensations and perceptions when the stimuli that originally evoked them are no longer present.
    .
    Most learning-disabled students have serious deficiencies in the area of visual memory, states Addie Cusimano in her book Learning Disabilities: There Is a Cure. Children who have not developed their visual memory fail to develop a good sight vocabulary and frequently experience serious writing and spelling difficulties.
    .
  • Auditory memory involves being able to take in information that is presented orally, to process that information, store it in one’s mind and then recall what one has heard.
    .
    A poor auditory short-term memory is often the cause of a child’s inability to learn to read using the phonics method, says Cyndi Ringoen, a neurodevelopmentalist. “Phonics is an auditory learning system, and it is imperative to have a sufficient auditory short-term memory in order to learn, utilize and understand reading, using the phonics method.”
    .
  • Sequential memory requires items to be recalled in a specific order. Many learners with reading difficulties have poor visual sequential memory, i.e. a poor ability to perceive things in sequence and then remember the sequence. Naturally this will affect their ability to read and spell correctly. After all, every word consists of letters in a specific sequence.
    .
  • Iconic memory. If a line of print were flashed at you very rapidly, say, for one-tenth of a second, all the letters you can visualise for a brief moment after that presentation constitute your iconic memory. Your iconic memory, together with your ability to discriminate between foreground and background, determines your eye-span. Eye-span is one of the skills that determine reading speed.
    .
  • Short-term memory is the capacity for holding a small amount of information in mind in an active, readily available state for a short period of time. The duration of short-term memory (when rehearsal or active maintenance is prevented) is believed to be in the order of seconds.
    .
    New research on dyslexia supports the hypothesis that dyslexia is caused by memory-related deficits. Researchers studied 52 musicians, including 24 who are dyslexic and 28 who are not dyslexic, and compared the performance of the two groups in a variety of auditory tests. While the dyslexic musicians performed just as well as their non-dyslexic peers in auditory perception tests, they scored much lower on tests of auditory short-term memory.
    .
  • Long-term memory is, obviously enough, intended for storage of information over a long period of time. Despite our everyday impressions of forgetting, it seems likely that long-term memory actually decays very little over time, and can store a seemingly unlimited amount of information almost indefinitely. Indeed, there is some debate as to whether we actually ever “forget” anything at all, or whether it just becomes increasingly difficult to access or retrieve certain items from memory.
    .
  • The term working memory was coined in the 1970s by two researchers named Baddeley and Hitch, referring to the ability to temporarily hold several facts or thoughts in memory while solving a problem or performing a task.
    .
    An important and consistent finding is that working memory problems interfere with reading comprehension. Reading is a complex skill that requires the simultaneous activation of many different brain processes. When reading a word, the reader must recognise the visual configuration of letters as well as the letter order, and he must engage in segmentation (breaking the word into individual sounds). Then, while being held in working memory, the phonemes (letter sounds) must be synthesized and blended to form recognizable words.
    .
    To comprehend sentences, several more skills are necessary. The reader must not only decode the words, but also comprehend the syntax, retain the sequence of words, use contextual cues, and integrate this with existing knowledge. This must be done simultaneously in order for sentences to be understood.
    .
    At the same time, sentences must be held in working memory and integrated with one another. Each sentence is read, understood, associated and integrated with the previous one and so forth. Eventually the entire paragraph is read and the reader continues to the next one.
    .
    By the end of the chapter both the details and main idea need to be retained in working memory, otherwise the reader may have retained isolated facts but may not know the sequence of events nor understand the main idea.
    .

Logical thinking

Logical thinking is the process in which one uses reasoning consistently to come to a conclusion. Problems or situations that involve logical thinking call for structure, for relationships between facts, and for chains of reasoning that “make sense.”

The skill of logical thinking gives readers the ability to make inferences, which involves using what you know to make a guess about what you don’t know, or reading between the lines. Readers who make inferences use the clues in the text along with their own experiences to help them figure out what is not directly said.


More About Edublox Online Tutor

Edublox Online Tutor offers multisensory cognitive training, aimed at developing and automatizing the foundational skills of reading and spelling, as well as application in the form of reading and spelling exercises. Edublox programs are effective for a variety of learning difficulties including dyslexia.